

Available online at www.sciencedirect.com

Journal of Organometallic Chemistry 693 (2008) 1771-1778

www.elsevier.com/locate/jorganchem

Hydrogermolysis reactions involving the α -germylated nitriles R₃GeCH₂CN (R = Ph, Pr^{*i*}, Bu^{*t*}) and germanium amides R₃GeNMe₂ (R = Pr^{*i*}, Bu^{*t*}) with Ph₃GeH: Substituent-dependent reactivity and crystal structures of Pr^{*i*}₃GeGePh₃ and Bu^{*t*}₃Ge[NHC(CH₃)CHCN]

Monika L. Amadoruge^a, Antonio G. DiPasquale^b, Arnold L. Rheingold^b, Charles S. Weinert^{a,*}

^a Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, United States ^b Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0303, United States

> Received 17 December 2007; accepted 18 January 2008 Available online 5 February 2008

Abstract

The α -germylated nitriles R₃GeCH₂CN (R = Ph, Pr^{*i*}, Bu^{*i*}) and germanium amides R₃GeNMe₂ (R = Pr^{*i*} and Bu^{*i*}) have been prepared and characterized and their reactivity with Ph₃GeH in CH₃CN has been explored to investigate their utility for the construction of Ge– Ge bonds. In each case the phenyl and *iso*-propyl derivatives furnish the corresponding digermanes R₃GeGePh₃ (R = Ph, Pr^{*i*}) where the amide reagents are converted to R₃GeCH₂CN *in situ* which subsequently react with Ph₃GeH. The rate of the Ge–C bond cleavage reactions was found to depend on the steric and electronic properties of the organic substituents. Attempted synthesis of Bu₃GeGePh₃ by these methods did not result in the desired product but rather in isolation of the 3-amidocrotononitrile species Bu₃'-Ge[NHC(CH₃)CHCN]. The crystal structures of Pr^{*i*}₃GeGePh₃ and Bu₃'Ge[NHC(CH₃)CHCN] have been determined. © 2008 Elsevier B.V. All rights reserved.

Keywords: Germanium amides; α-Germylated nitriles; Hydrogermolysis reaction

1. Introduction

The synthesis of heavy group 14 oligomers is of interest due to the optical and electronic properties exhibited by these systems resulting from their inherent σ -delocalization. Well-developed methods for the preparation of silicon- [1–11] and tin- [12–28] containing oligomers and polymers have been known for some time. In the case of germanium, until recently existing methods for the synthesis of oligomeric systems have been complicated by low yields and/or the formation of mixtures of products [29–

* Corresponding author. Tel.: +1 405 744 6543.

56]. Improvements in this regard have been made by the use of SmI_2 to promote Ge–Ge bond formation [57,58], the insertion reactions of germylenes into germane Ge–H bonds [59], and use of the hydrogermolysis reaction for Ge–Ge bond formation [60].

We recently reported on the latter process in which a germanium hydride R_3GeH and a germanium amide R_3GeNMe_2 are used as the starting materials [60]. The hydrogermolysis reaction involving these two reagents only yields the desired products when CH₃CN is employed as the reaction medium and this process was shown to proceed via initial conversion of the amide to an α -germylated nitrile R_3GeCH_2CN by reaction of the amide with the solvent, thus rendering CH₃CN not only a solvent but also a

E-mail address: weinert@chem.okstate.edu (C.S. Weinert).

⁰⁰²²⁻³²⁸X/\$ - see front matter © 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2008.01.045

reagent in the reaction. The α -germylated nitrile is therefore the active species in this interconversion, and the general lability of the Ge–C bond in reactions Et₃GeCH₂CN with various substrates has been reported [61,62].

We have continued to investigate the utility of α -germylated nitriles as synthons for the construction of Ge-Ge bonds, since these materials can be prepared by a one-pot method [60] from the corresponding chlorides and LiCH₂CN [63]. Specifically, we have attempted the synthesis of three digermanes $R_3GeGePh_3$ ($R = Ph, Pr^i, Bu^t$) from Ph₃GeH and R₃GeCH₂CN. During the course of this study, we determined that the phenyl- and iso-propyl digermanes could be obtained by this process, but successful Ge-Ge bond formation required longer reaction times than that observed for the preparation of Bu₃GeGePh₃ [60]. Furthermore, the synthesis of Bu^t₃GeGePh₃ could not be achieved using neither the α -germylated nitrile $Bu_3^tGeCH_2CN$ nor the amide $Bu_3^tGeNMe_2$. However, the latter reaction unexpectedly vielded the 3-amidocrotononitrile species Bu₃^tGe[NHC(CH₃)CHCN] which was isolated and structurally characterized. These findings are the focus of this paper.

2. Results and discussion

We have shown that the reaction of Bu_3GeCH_2CN with Ph_3GeH generates the digermane $Bu_3GeGePh_3$ cleanly in less than 1 h at 85 °C in CH₃CN solvent [60]. Generation of the Ge–Ge bond in this case proceeds much more rapidly than reactions starting with germanium amides R_3GeNMe_2 and germanium hydrides R'_3GeH in CH₃CN. The latter process requires a reaction time of 48 h and was shown to proceed by reaction of the amide with CH₃CN to generate the α -germylated nitrile as an intermediate which subsequently reacts with the hydride to furnish the Ge–Ge bond.

The α -germylated nitriles Ph₃GeCH₂CN (1a), Pr^{*i*}₃₋ GeCH₂CN (1b), Bu^{*i*}₃GeCH₂CN (1c) were prepared in good to excellent yields from the corresponding monochlorides and LiCH₂CN as shown in Scheme 1. We encountered some difficulty preparing the starting chloride Bu^{*i*}₃GeCl used for the synthesis of 1c by the published procedure involving treatment of GeCl₄ with Bu^{*i*}Li [64] which resulted in the generation of oligomeric and polymeric materials from which the desired compound could not be separated. Use of the milder organocuprate LiCu(CN)Bu^{*i*} as the alkylating agent did furnish the desired product but purification by vacuum distillation required a higher temperature than the published conditions [53].

Compounds 1a-c were shown to be pure by NMR spectroscopy but we were unable to obtain satisfactory elemental analyses for these materials. These species appear to be thermally unstable but could be isolated and stored at -35 °C in the glovebox for several days. Resonances for the $-CH_2CN$ protons were visible in each case in the ¹H NMR spectra of these compounds in C_6D_6 at δ 1.98 (1a), 1.43 (1b), 1.59 (1c) ppm where that for 1a matches the reported value [61]. The ¹³C NMR spectra contain resonances for the terminal –CN groups in the range δ 115–125 ppm and resonances for the α -carbons between δ 20-30 ppm. These values also are similar to those for the structurally characterized compound [(Me₃Si)₂CH]₂. Ge(H)(CH₂CN) [65] although the α -carbon resonances for 1a-c are shifted downfield relative to that for this species.

The reaction of **1a** with 1 equiv. of Ph₃GeH in CD₃CN solution was monitored by ¹H NMR spectroscopy (Eq. (1)). Compound **1a** exhibits a singlet at δ 2.20 ppm arising from the $-CH_2CN$ protons in CD₃CN solution. Upon addition of 1 equiv. of Ph₃GeH to the NMR tube this feature immediately began to decrease in intensity and a new resonance at δ 2.08 ppm began to appear. The singlet at δ 2.08 ppm steadily increased in intensity during the course of the experiment while the intensity of the feature at δ 2.20 ppm decreased. After a total reaction time of 6 h, the downfield singlet was absent while the singlet at δ 2.08 ppm remained, and the feature at δ 5.95 ppm corresponding to Ph₃GeH was also no longer visible. The resonance at δ 2.08 ppm matches exactly with the ¹H NMR feature observed for a sample of CH₃CN in CD₃CN solution which unequivocally indicates the formation of CH₃CN in this process. However, this reaction proceeds slower than that between Bu₃GeCH₂CN and Ph₃GeH which is complete in only 50 min [60]. In order to confirm the generation of $Ph_3GeGePh_3$ (2), the reaction was carried out on a preparative scale resulting in the isolation of 2 in 88% yield which was characterized by elemental analysis.

Similarly, treatment of **1b** with Ph_3GeH generated the corresponding digermane $Pr_3^iGeGePh_3$ (**3**) in high (87%) yield. However, this reaction proceeded significantly more slowly that involving the phenyl derivative **1a**, requiring reaction times of between 32 and 36 h for complete consumption of the starting materials. The reactivity of Et_3GeCH_2CN with various substrates has been investigated

$$\operatorname{LiNPr}_{2}^{i} + \operatorname{CH}_{3}\operatorname{CN} \xrightarrow{\operatorname{THF}} \operatorname{LiCH}_{2}\operatorname{CN} \xrightarrow{\operatorname{R}_{3}\operatorname{GeCl}} \operatorname{THF} \operatorname{R}_{3}\operatorname{GeCH}_{2}\operatorname{CN}$$

$$- \operatorname{RNPr}_{2}^{i} - \operatorname{RNPr}_{2}^{i} - \operatorname{RNPr}_{2}^{i} - \operatorname{RNPr}_{2}^{i} - \operatorname{RNPr}_{2}^{i} + \operatorname{RNP}\operatorname{RNPr}_{2}^{i} + \operatorname{RNPr}_{2}^{i} + \operatorname{RNP}\operatorname{RNPr}_{2}^{i} + \operatorname{RNPr}_{2}^{i} + \operatorname{RNP}\operatorname{RNPr}_{2}^{i} + \operatorname{RNPr}_{2}^{i} + \operatorname{RNP}\operatorname{RNPr}_{2}^{i} + \operatorname{RNP}\operatorname{RNP}\operatorname{RNPr}_{2}^{i} + \operatorname{RNP}\operatorname{RNPr}_{2}^{i} + \operatorname{RNP}\operatorname{RNP}\operatorname{RNPr}_{2}^{i} + \operatorname{RNP}\operatorname{RNP}\operatorname{RNP}\operatorname{RNP}\operatorname{RNPr}_{2}^{i} + \operatorname{RNP}\operatorname{$$

which demonstrated the lability of the Ge– CH_2CN bond in this compound [61]. However, the reactivity of other α -germylated nitriles has not been described and the reported lability of the Ge–C bonds in these compounds appears to be highly dependent on the substituents attached to germanium, where the presence of sterically demanding or electron withdrawing groups can significantly retard reactions involving cleavage of the Ge–C bond.

Since the α -germylated nitrile reagents are more difficult to prepare than the corresponding amides and do not provide the Ge-Ge bonded species more rapidly in a general sense, there is little advantage to employing the -CH₂CN versus the -NMe₂ ligand in reagents for the construction of Ge-Ge bonds. Therefore, the germanium amide reagents $Pr_{3}^{i}GeNMe_{2}$ (4a) and $Bu_{3}^{t}GeNMe_{2}$ (4b) were also prepared by the metathesis reaction of the corresponding chlorides and LiNMe2. The iso-propyl derivative 4a could be synthesized in benzene or THF solvent at room temperature but synthesis of 4b required refluxing the two reagents in THF for 24 h due to the steric crowding about the germanium atom. The ¹H NMR spectra of these species contain characteristic resonances for the protons of the amide groups at δ 2.67 (4a) and 2.71 (4b) ppm in C₆D₆ solvent and elemental analyses for both compounds were also successfully obtained.

The digermane Pr_3^i GeGePh₃ (3) could be obtained in slightly higher yield (91%) versus the reaction of **1b** and Ph₃GeH when using the amide reagent **4a** as the starting material (Eq. (2)). Compound **3** was characterized by NMR (¹H and ¹³C) spectroscopy and elemental analysis, where resonances for the methyl and methine protons of the *iso*-propyl groups appear as a doublet at δ 1.18 ppm and a septet at δ 1.67 ppm (J = 7.5 Hz) in C₆D₆ solvent, respectively. The X-ray crystal structure of **3** was deter-

Fig. 1. ORTEP diagram of Pr_3^i GeGePh₃ (3). Thermal ellipsoids are drawn at 50% probability.

Table 1				
Selected bond	distances (Å)	and angles	(°) for Pr ₃ GeG	$ePh_3(3)$

Ge(1)–Ge(2)	2.4637(7)	C(1)-Ge(1)-Ge(2)	105.04(6)
Ge(1)-C(1)	1.990(2)	C(4)-Ge(1)-Ge(2)	113.64(6)
Ge(1)-C(4)	1.980(2)	C(7)-Ge(1)-Ge(2)	110.11(6)
Ge(1) - C(7)	1.986(2)	C(10)-Ge(2)-C(16)	107.01(8)
Ge(2) - C(10)	1.964(2)	C(10)-Ge(2)-C(22)	107.34(8)
Ge(2) - C(16)	1.960(2)	C(16)-Ge(2)-C(22)	107.90(8)
Ge(2)–C(22)	1.961(2)	C(10)-Ge(2)-Ge(1)	107.95(6)
C(1)-Ge(1)-C(4)	105.87(9)	C(16)-Ge(2)-Ge(1)	115.14(6)
C(1)-Ge(1)-C(7)	110.27(9)	C(22)-Ge(2)-Ge(1)	111.16(6)
C(4) - Ge(1) - C(7)	111.60(9)		

mined and an ORTEP diagram is shown in Fig. 1 while selected bond distances and angles are collected in Table 1. The three sterically encumbering *iso*-propyl groups in 3 result in a Ge–Ge distance of 2.4637(7) Å, which is longer than the corresponding bond lengths in Me₃GeGePh₃ (5, 2.418(1) Å) [66], Et₃GeGePh₃ (6, 2.4253(7) Å) [60]. Bu₃ⁿGe-GePh₃ (7, 2.4208(8) Å) [60], and Ph₃GeGePh₃ (2, 2.446(1) Å) [32]. The average Ge– $C_{aliphatic}$ distance in 3 is 1.985(2) Å which is significantly longer than those of 5-7which range from 1.943 to 1.959 Å. The average Ge– C_{ipso} distance (1.962(2) Å) in 3 is also elongated versus those in **2** and **5–7** (1.954(2)-1.957(2) Å). The average C–Ge–C angles among 3 and 5-7 for the aliphatic substituents approach normal values for a tetrahedral geometry at germanium ranging from 108.7(1) to 109.75(9)°, while those for the phenyl substituents in 2, 3, and 5–7 are generally more obtuse ranging from $108.1(3)^{\circ}$ to $111.51(6)^{\circ}$.

$$\begin{array}{c} \operatorname{Pr}_{3}^{i}\operatorname{GeNMe_{2}} \xrightarrow{Ph_{3}\operatorname{GeH}} & \operatorname{Pr}_{3}^{i}\operatorname{Ge-GePh_{3}} + \operatorname{HNMe_{2}} \\ \mathbf{4a} & \mathbf{5}^{\circ}\operatorname{C}, 48 \ h & 91 \ \% \end{array}$$
(2)

The synthesis of $Bu'_3GeGePh_3$ starting from **4b** and Ph_3GeH was attempted but no evidence for the formation of this product was found. Vacuum distillation of the crude product mixture obtained from the reaction of **4b** with Ph_3GeH in CH₃CN at 120 °C afforded a small amount (0.025 g) of unreacted **4b** and continued distillation at 180 °C resulted in the isolation of a yellow solid material which, upon recrystallization from cold hexane, furnished $Bu'_3Ge[NHC(CH_3)CHCN]$ (**8**) as a minor product with a maximum yield of 6% (Eq. (3)) over three separate trials. Unreacted Ph_3GeH and Bu'_3GeCH_2CN were also contained in this second fraction as shown by ¹H NMR spectroscopy.

The pathway for this reaction was probed using ${}^{13}C$ NMR spectroscopy in CD₃CN solvent which indicated that the presence of Ph₃GeH was necessary for the

generation of both Bu_3^t GeCH₂CN and compound 8. The appearance of the ¹³C NMR spectrum after heating 4b alone in CD₃CN for 6 days at 85 °C was unchanged with the resonance for the carbon atoms of the -NMe₂ groups at δ 42.2 ppm remaining present. However, heating the sample for 24 h after the addition of 1 equiv. of Ph₃GeH resulted a significant decrease in intensity of this feature as well as the corresponding resonance for the tert-butyl groups of 4b. After continued heating for 72 h, the appearance of peaks at δ 135.8, 130.3, and 129.5 ppm indicated the presence of the deuterated analog of 8, and features for Ph₃GeH and Bu^t₃GeCD₂CN were also present. The appearance of the ¹³C NMR spectrum remained unchanged upon heating the sample for a further 72 h. These results are consistent with those obtained from the preparative scale reaction where a small amount of unreacted 4b was recovered in the low boiling fraction (vide supra).

It is likely that compound **8** is generated by a variation of the Thorpe reaction used for the dimerization of nitriles which requires the presence of a base in either catalytic or stoichiometric amounts [67]. Although Ph₃GeH cannot be considered a base, it is required for the generation of both the α -germylated nitrile **1c** and compound **8** from Bu^t₃GeCl but is not consumed to any significant degree in the process and so appears to function as a catalyst. Although the exact role of Ph₃GeH is not known, a proposed pathway for the formation of **8** is shown in Scheme 2.

The ¹H NMR spectrum of **8** in C_6D_6 contains a single resonance at δ 1.08 ppm for the *tert*-butyl groups as well as sharp signals at δ 1.94 and 4.33 ppm corresponding to the protons of the methyl group and the single olefinic proton (respectively), while a broad singlet at δ 3.18 ppm arises from the proton bound to nitrogen. The presence of only one feature for each type of proton in the 3-amidocrotononitrile ligand in **8** indicates the substituents about the C=C double bond are present in only one conformation.

In order to ascertain the exact conformation of the ligand, the X-ray crystal structure of 8 was determined. An ORTEP diagram of 8 is shown in Fig. 2 while bond distances and angles are collected in Table 2. The 3-amidocrotononitrile ligand exclusively adopts an (E)-configuration

Fig. 2. ORTEP diagram of $Bu'_3GeNHC(CH_3)CHCN$ (8). Thermal ellipsoids are drawn at 50% probability.

Table 2						
Selected	bond	distances	(Å) and	angles (°)	for	Bu3GeNHC(CH3)CHCN
(8)						

(-)			
Ge(1)-N(1)	1.895(2)	C(5)-Ge(1)-C(9)	112.76(9)
Ge(1) - C(5)	2.006(2)	C(5)-Ge(1)-C(13)	113.61(8)
Ge(1)-C(9)	2.015(2)	C(9)-Ge(1)-C(13)	112.47(9)
Ge(1)-C(13)	2.018(2)	Ge(1)-N(1)-C(2)	135.4(1)
N(1)-C(2)	1.360(3)	N(1)-C(2)-C(1)	115.6(2)
C(1)–C(2)	1.509(3)	N(1)-C(2)-C(3)	125.0(2)
C(2)–C(3)	1.361(3)	C(1)-C(2)-C(3)	119.5(2)
C(3)-C(4)	1.414(3)	C(2)-C(3)-C(4)	121.4(2)
C(4)–N(2)	1.152(3)	C(3)-C(4)-N(2)	179.6(3)
N(1)-Ge(1)-C(5)	108.76(8)		
N(1)-Ge(1)-C(9)	99.25(7)		
N(1)-Ge(1)-C(13)	108.90(8)		

about the C=C double bond which measures 1.361(3) Å. Crystallographically characterized Ge compounds bearing a single Ge–N bond are rare, and this distance in **8** is 1.895(2) Å which is longer than the Ge–N distances of

1.854(3), 1.818(2), and 1.824(9) Å in the primary germylamines Mes₃GeNH₂ [68], $(RGe)_2(NH_2)_4(NH)$ (R = $Pr_{2}^{\prime}C_{6}H_{3}NSiMe_{3}$ [69]. and $[(2.6-Pr_{2}^{i}C_{6}H_{3})NSiM$ e₃Ge(NH₂)NH₃ [70] (respectively). However, the Ge-N bond length in 8 is similar to those in the germanium(IV) compounds [(Me₃Si)₂N]₃GeBr (1.848(3) Å)and $[(Me_3Si)_2N]_3$ GeBu (1.890(2) Å) [71], and also compares with the Ge-N distances in the germanium(II) amides $Ge[N(SiMe_3)_2]_2$ [72] and $Ge[NC_6H_6(CH_3)_4-2,2,6,6]_2$ [73] which are 1.875(5) and 1.88(5) Å (respectively). The environment about the germanium atom in 8 is distorted tetrahedral with the largest perturbation occurring in the C-Ge-C angles which average 112.95(8)°. This distortion occurs due to the presence of the three bulky tert-butyl groups which also results in the long average Ge-C bond length of 2.013(2) Å. This distance is elongated by 0.07 Å relative to typical Ge-C single bonds (1.94 Å) [74], but is significantly shorter than the average Ge-C bond length in Bu_3^t GeGeBu₃^t which is 2.076(7) Å [53].

3. Conclusions

We have demonstrated that the reactions of germanium amides R_3GeNMe_2 (R = Ph, Pr^i) with Ph_3GeH in CH_3CN solution proceed via conversion of the amide to an α -germylated nitrile R_3GeCH_2CN which is the active species in the Ge–Ge bond forming reaction. The intermediate R_3GeCH_2CN reagents, which can also be directly synthesized from the chlorides R_3GeCl and LiCH₂CN, reacts with Ph_3GeH to furnish the digermanes and CH₃CN. The lability of the Ge–C bond in the α -germylated nitriles appears to depend on the steric and/or electronic attributes of the organic substituents attached to germanium, with reactions involving the phenyl-substituted derivative proceeding more rapidly than those of the *iso*-propyl-substituted species.

Treatment of either Bu'_3GeCH_2CN or Bu'_3GeNMe_2 with Ph_3GeH did not result in isolation of the expected digermane $Bu'_3GeGePh_3$ but rather generated the 3-amidocrotononitrile-containing germane $Bu'_3Ge[NHC(CH_3)CHCN]$ as a minor product. The nitrogen-containing substituent in this compound results from reaction of Bu'_3GeCH_2CN with a further equivalent of CH_3CN and the 3-amidocrotononitrile ligand is present exclusively in the (*E*)-configuration.

4. Experimental

4.1. General remarks

All manipulations were carried out using standard Schlenk, syringe, and glovebox techniques [75]. The reagents GeCl₄, Pr_3^i GeCl, Ph_3 GeCl, and Ph_3 GeH were purchased from Gelest, Inc. and used as received, and CuCN and Bu^tLi (1.7 M in pentane) were purchased from Aldrich while LiNPr_2^i was prepared *in situ* from HNPr_2^i and BuⁿLi. The reagent LiCH₂CN was prepared according to a literature procedure [63], and our modification of the reported

synthesis [53] of Bu_3^t GeCl is described below. Solvents were purified using a Glass Contour solvent purification system. NMR spectral data were recording using a Varian Gemini 2000 spectrometer operating at 300 MHz (¹H) or 75.5 MHz (¹³C) and were referenced to resonances for the solvent. Elemental analyses were conducted by Desert Analytics (Tucson, Az) or Midwest Microlabs (Indianapolis, IN).

4.2. Synthesis of Bu_3^t GeCl

To a suspension of CuCN (11.55 g, 0.129 mol) in THF (75.5 mL) cooled to $-25 \,^{\circ}$ C in a *meta*-dichlorobenzene/ liquid N₂ bath was added a solution of 1.7 M Bu^tLi in pentane (75.8 mL, 0.129 mol) dropwise over 1 h. The resulting suspension was cooled to $-40 \,^{\circ}$ C using a CH₃CN/liquid N₂ bath and neat GeCl₄ (9.25 g, 0.043 mmol) was slowly added. The THF was removed *in vacuo* and exchanged for 65 mL of a 1:1 mixture of hexane and benzene. The insoluble salts were removed by filtration and the solvent was distilled off under N₂. The resulting oil was vacuum distilled at 0.010 torr and 150 °C to yield Bu^t₃GeCl (4.311 g, 36%) as a colorless oil. ¹H NMR (C₆D₆, 25 °C) δ 1.11 (s, 27H, -C(CH₃)₃) ppm. ¹³C NMR (C₆D₆, 25 °C) δ 29.8 (-C(CH₃)₃), 31.3 (-C(CH₃)₃) ppm.

4.3. Synthesis of Ph₃GeCH₂CN (1a)

A solution of LiCH₂CN was prepared from CH₃CN (0.10 mL, 1.91 mmol) and LiNPr^{*i*}₂ (0.212 g, 1.98 mmol) and stirred at -78 °C for 30 min. To this was added a solution of Ph₃GeCl (0.666 g, 1.96 mmol) in THF (20 mL) at -78 °C. The reaction mixture was warmed to room temperature and stirred for 12 h. The volatiles were removed *in vacuo* to yield a white semisolid which was suspended in hexane and filtered through Celite. Removal of the solvent furnished Ph₃GeCH₂CN (0.472 g, 70%) as a white solid. ¹H NMR (C₆D₆, 25 °C) δ 7.43 (d, 6H, *o*-C₆H₅), 7.08–7.00 (m, 9H, aromatics), 1.98 (s, 2H, $-CH_2$ CN) ppm. ¹³C NMR (C₆D₆, 25 °C) δ 132.5, 128.4, 126.9, 125.1, 124.2, 20.2 ppm.

4.4. Synthesis of $Pr_3^i GeCH_2CN$ (1b)

The same procedure for the preparation of **1a** was used for **1b** staring with Pr_3^i GeCl (0.422 g, 1.78 mmol), CH₃CN (95 µL, 1.82 mmol) and LiNPr₂ⁱ (0.195 g, 1.82 mmol) and **1b** was isolated as a colorless oil. Yield = 0.358 g, 83%. ¹H NMR (C₆D₆, 25 °C) δ 1.62 (sept, J = 7.2 Hz, 3H, (CH₃)₂CH–), 1.43 (s, 2H, -CH₂CN), 1.18 (d, J = 7.2 Hz, 18H, (CH₃)₂CH–) ppm. ¹³C NMR (C₆D₆, 25 °C) δ 118.4 (-CH₂CN), 24.6 (-CH₂CN), 19.3 ((CH₃)₂CH–), 14.8 ((CH₃)₂CH–) ppm.

4.5. Synthesis of $Bu_3^t GeCH_2CN$ (1c)

The same procedure for the preparation of 1a was used for 1c staring with Bu^t₃GeCl (0.225 g, 0.805 mmol), CH₃CN (44 μ L, 0.84 mmol) and LiNPr^{*i*}₂ (0.090 g, 0.84 mmol) and **1c** was isolated as a colorless oil. Yield = 0.147 g, 64%. ¹H NMR (C₆D₆, 25 °C) δ 1.59 (s, 2H, -CH₂CN), 1.06 (s, 27H, -C(CH₃)₃) ppm. ¹³C NMR (C₆D₆, 25 °C) δ 123.2 (-CH₂CN), 31.4 (-C(CH₃)₃), 30.2 (-C(CH₃)₃), 28.3 (-CH₂CN) ppm.

4.6. Preparation of $Ph_3GeGePh_3(2)$ using 1a

The same procedure used for the synthesis of **3** (Section 4.10, *vide infra*) from **4a** was employed starting with **1a** (0.315 g, 0.916 mmol) and Ph₃GeH (0.282 g, 0.925 mmol) yielding Ph₃GeGePh₃ (**2**) (0.488 g, 88%). Anal. Calc. for $C_{36}H_{30}Ge_2$: C, 71.14; H, 4.97. Found: C, 71.02; 5.04%.

4.7. Preparation of $Ph_3GeGePr_3^i$ (3) using 1b

The same procedure used to prepare **3** from **4a** (Section 4.10, *vide infra*) was employed starting with **1b** (0.255 g, 1.05 mmol) and Ph₃GeH (0.332 g, 1.09 mmol) yielding **3** (0.461 g, 87%).

4.8. Preparation of $Pr_3^i GeNMe_2$ (4a)

To a solution of Pr_i^3 GeCl (1.00 g, 4.21 mmol) in benzene (15 mL) was added a suspension of LiNMe₂ (0.225 g, 4.42 mmol) in benzene (20 mL). The resulting suspension was stirred for 24 h and then filtered through Celite. The volatiles were removed from the filtrate *in vacuo* to yield **4a** (0.778 g, 75%) as a colorless oil. ¹H NMR (C₆D₆, 25 °C) δ 2.67 (s, 6H, $-N(CH_3)_2$), 1.42 (sept, J = 7.2 Hz, 3H, CH₃CHCH₃), 1.10 (d, J = 7.2 Hz, 18H, CH₃CHCH₃) ppm. ¹³C NMR (C₆D₆, 25 °C) δ 42.2 ($-N(CH_3)_2$), 18.8 (CH₃CHCH₃), 15.7 (CH₃CHCH₃) ppm. Anal. Calc. for C₁₁H₂₇GeN: C, 53.72; H, 11.07. Found: C, 53.81; H, 11.11%.

4.9. Synthesis of $Bu_3^t GeNMe_2$ (4b)

To a solution of Bu^t₃GeCl (0.500 g, 1.79 mmol) in THF (20 mL) was added a solution of LiNMe₂ (0.091 g, 1.79 mmol) in THF (10 mL). The reaction mixture was refluxed for 18 h and the solvent was removed in vacuo. The resulting solid was dissolved in benzene, filtered through Celite, and the volatiles were removed in vacuo to yield a pale yellow semisolid. The crude product was distilled in a Kugelrohr oven (125 °C, 0.07 torr) to yield 4b (0.315 g, 61%) as a colorless oil. ¹H NMR (C₆D₆, 25 °C) δ 2.71 (s, 6H, -N(CH₃)₂), 1.19 (s, 27H, -C(CH₃)₃) ppm. ¹H NMR (CD₃CN, 25 °C) δ 2.63 (s, 6H, $-N(CH_3)_2$), 1.27 (s, 27H, $-C(CH_3)_3$) ppm. ¹³C NMR (C₆D₆, 25 °C) δ 41.9 (-N(CH₃)₂), 32.8 (-C(CH₃)₃), 29.9 (-C(CH₃)₃) ppm. ¹³C NMR (CD₃CN, 25 °C) δ 42.2 (-N(CH₃)₂), 31.6 $(-C(CH_3)_3)$, 30.2 $(-C(CH_3)_3)$ ppm. Anal. Calc. for C14H33GeN: C, 58.38; H, 11.55. Found: C, 58.03; H, 11.67%.

4.10. Preparation of $Pr_3^i GeGePh_3$ (3) using 4a

To a solution of 4a (0.778 g. 3.16 mmol) in acetonitrile (20 mL) in a Schlenk tube was added a solution of Ph₃GeH (1.239 g, 4.062 mmol) in acetonitrile (10 mL). The tube was sealed and the reaction mixture was heated at 85 °C for 48 h. The volatiles were removed in vacuo and the crude product was distilled in a Kugelrohr oven (180 °C, 0.05 torr) to remove excess Ph₃GeH which furnished 3 (1.451 g, 91%) as a colorless solid. ¹H NMR $(C_6D_6, 25 \circ C) \delta$ 7.72–7.68 (m, 6H, meta-H), 7.20–7.15 (m, 9H, para- and ortho-H), 1.67 (sept, J = 7.5 Hz, 3H, CH_3CHCH_3), 1.18 (d, J = 7.5 Hz, 18H, CH_3CHCH_3) ppm. ¹³C NMR (C_6D_6 , 25 °C) δ 139.8 (*ipso-C*), 135.9 (ortho-C), 128.6 (meta-C), 128.5 (para-C), 21.3 (*C*H₃CH*C*H₃), 16.8 (*C*H₃*C*HCH₃) ppm. UV–Vis: λ_{max} 234 nm (br, ϵ 3.82 × 10⁴ cm⁻¹ M⁻¹). Anal. Calc. for C₂₇H₃₆Ge₂: C, 64.12; H, 7.17. Found: C, 63.88; H, 6.97%.

4.11. Preparation of $Bu_3^tGe[NHC(CH_3)CHCN]$ (8)

To a solution of 4b (0.281 g, 0.976 mmol) in CH₃CN (5 mL) was added a solution of Ph₃GeH (0.299 g, 0.981 g) in CH₃CN (10 mL). The reaction mixture was sealed in a Schlenk tube and was heated at 85 °C for 72 h. The solvent was removed in vacuo to yield a yellow oil. The crude material was distilled in a Kugelrohr oven (120 °C, 0.050 torr) resulting in the collection of a clear oil which was isolated (0.147 g) and identified to be pure Bu_3^tGeN -Me₂. A new receiving flask was attached to the apparatus and distillation was continued (180 °C, 0.05 torr) resulting in the isolation of a yellow oil (0.338 g) which consisted of a mixture of 8, 4b, and Ph₃GeH as shown by ¹H NMR spectroscopy. Recrystallization of the product from hexane $(\sim 3 \text{ mL})$ at $-35 \circ \text{C}$ afforded **8** as colorless crystals (0.020 g, 6.3%). ¹H NMR $(C_6D_6, 25 \,^{\circ}\text{C}) \,\delta \,4.33$ (s, 1H, C=CHCN), 3.18 (br s, 1H, Ge-NH), 1.94 (s, 3H, H₃C-C=C), 1.08 (s, 28H, $-C(CH_3)_3$) ppm. ¹H NMR (CD₃CN, 25 °C) & 4.09 (s, 1H, C=CHCN), 3.84 (br s, 1H, Ge-NH), 2.14 (s, 3H, H₃C-C=C), 1.25 (s, 28H, -C(CH₃)₃) ppm. ¹³C NMR (CD₃CN, 25 °C) δ 135.8 (-CN), 130.2 (N-C=C), 129.4 (N-C=C), 66.0 (C=C-CH₃), 31.5 (- $C(CH_3)_3$) 30.7 (- $C(CH_3)_3$) ppm. Anal. Calc. for C₁₆H₃₂GeN₂: C, 59.13; H, 9.92. Found: C, 58.92; H, 9.97%.

4.12. NMR tube reaction of Bu_3^t GeNMe₂ with Ph₃GeH

A solution of **4b** (0.025 g, 0.087 mmol) in CD₃CN (0.5 mL) was prepared in a Kontes screw-cap NMR tube. The sample was heated at 85 °C for 6 days during which time the ¹³C NMR spectrum was recorded at regular intervals. After this time, Ph₃GeH (0.027, 0.088 mmol) was added to the tube and the sample was heated at 85 °C for 24 h. The ¹³C NMR spectrum was recorded and the sample was heated at 85 °C for a further 72 h.

4.13. X-ray crystal structure of compounds 3 and 8

Diffraction intensity data were collected with a Siemens P4/CCD diffractometer. Crystallographic data and details of X-ray studies are shown in Table 3. Absorption corrections were applied for all data by SADABS. The structures were solved using direct methods, completed by difference Fourier syntheses, and refined by full matrix least squares procedures on F^2 . All non-hydrogen atoms were refined with anisotropic displacement coefficients and hydrogen atoms were treated as idealized contributions. All software and sources of scattering factors are contained in the SHE-XTL (5.10) program package (G. Sheldrick, Bruker XRD, Madison, WI). ORTEP diagrams were drawn using the ORTEP3 program (L.J. Farrugia, Glasgow).

Table 3

Crystal data and structure refinement details for 3 and 8

Empirical formula	$C_{27}H_{36}Ge_2$ (3)	C ₁₆ H ₃₂ GeN ₂ (8)
Formula weight (g/mol)	505.74	325.03
Temperature (K)	208(2)	100(2)
Wavelength (Å)	0.71069	0.71073
Crystal system	Triclinic	Monoclinic
Space group	$P\overline{1}$	$P2_1/c$
a (Å)	8.786(2)	14.2022(8)
$b(\mathbf{A})$	9.361(3)	8.4666(5)
c (Å)	15.544(4)	14.9069(8)
α (°)	90.138(5)	90
β (°)	90.176(5)	93.932(1)
γ (°)	102.212(5)	90
Volume (Å ³)	1249.5(6)	1788.2(2)
Ζ	2	4
Calculated density (g/cm ³)	1.344	1.207
Absorption coefficient	2.416	1.705
(mm^{-1})		
<i>F</i> (000)	524	696
Crystal size (mm)	$0.14 \times 0.10 \times 0.07$	$0.35\times0.30\times0.28$
Crystal color and shape	Colorless block	Colorless block
θ Range for data collection (°)	2.23–28.27	1.44-28.21
Index ranges	$-11 \leqslant h \leqslant 11,$	$-14 \leqslant h \leqslant 17,$
	$-12 \leqslant k \leqslant 12$,	$-10 \leq k \leq 10,$
	$-20 \leq l \leq 20$	$-19 \leq l \leq 19$
Reflections collected	15365	12/64
Independent reflections	$5/60 (R_{int} = 0.0316)$	$3935 (R_{int} = 0.02/9)$
Completeness to θ	25.00 (99.8%)	25.00 (97.6%)
Absorption correction	equivalents	Multi-scan
Maximum and minimum transmission	0.8491 and 0.7285	0.6467 and 0.5867
Refinement method	Full-matrix least-	Full-matrix least-
	squares on F^2	squares on F^2
Data/restraints/parameters	5760/0/268	3935/0/172
Goodness of fit on F^2	1.067	1.020
Final <i>R</i> indices $(I \ge 2\sigma(I))$		
R_1	0.0335	0.0296
wR_2	0.0892	0.0689
Final <i>R</i> indices (all data)		
R_1	0.0376	0.0388
wR_2	0.0923	0.0733
Largest difference in peak and hole ($e \text{ Å}^{-3}$)	1.126 and -0.817	0.486 and -0.436

Acknowledgement

Funding for this work was provided by the Department of Chemistry at Oklahoma State University.

Appendix A. Supplementary material

CCDC 670761 and 670763 contain the supplementary crystallographic data for 8 and 5. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jorganchem.2008.01.045.

References

- R.E. Benfield, R.H. Cragg, R.G. Jones, A.C. Swain, J. Chem. Soc., Chem. Commun. (1992) 1022.
- [2] Y. Kimata, H. Suzuki, S. Satoh, A. Kuriyama, Chem. Lett. (1994) 1163.
- [3] R.G. Jones, R.E. Benfield, R.H. Cragg, A.C. Swain, S.J. Webb, Macromolecules 26 (1993) 4878.
- [4] E.F. Hengge, J. Inorg. Organomet. Polym. 3 (1993) 287.
- [5] R.D. Miller, P.K. Jenkner, Macromolecules 27 (1994) 5921.
- [6] B. Lacave-Goffin, L. Hevesi, J. Devaux, J. Chem. Soc., Chem. Commun. (1995) 769.
- [7] S. Kashimura, M. Ishifune, N. Yamashita, H.-B. Bu, M. Takebayashi, S. Kitajima, D. Yoshiwara, Y. Kataoka, R. Nishida, S. Kawasaki, H. Murase, T. Shono, J. Org. Chem. 64 (1999) 6615.
- [8] Y. Kimata, H. Suzuki, S. Satoh, A. Kuriyama, Organometallics 14 (1995) 2506.
- [9] R. Shankar, A. Saxena, A.S. Brar, J. Organomet. Chem. 650 (2002) 223.
- [10] V.V. Zuev, N.K. Skvortsov, J. Polym. Sci. A: Polym. Chem. 41 (2003) 3761.
- [11] D. Bratton, S.J. Holder, R.G. Jones, W.K.C. Wong, J. Organomet. Chem. 685 (2003) 60.
- [12] T. Imori, V. Lu, H. Cai, T.D. Tilley, J. Am. Chem. Soc. 117 (1995) 9931.
- [13] S.M. Thompson, U. Schubert, Inorg. Chim. Acta 357 (2004) 1959.
- [14] F. Choffat, P. Smith, W. Caseri, J. Mater. Chem. 15 (2005) 1789.
- [15] V. Lu, T.D. Tilley, Macromolecules 29 (1996) 5763.
- [16] V.Y. Lu, T.D. Tilley, Macromolecules 33 (2000) 2403.
- [17] P.R. Deacon, N. Devylder, M.S. Hill, M.F. Mahon, K.C. Molloy, G.J. Price, J. Organomet. Chem. 687 (2003) 46.
- [18] M. Okano, N. Matsumoto, M. Arakawa, T. Tsuruta, H. Hamano, Chem. Commun. (1998) 1799.
- [19] J.R. Babcock, L.R. Sita, J. Am. Chem. Soc. 118 (1996) 12481.
- [20] K. Mochida, M. Hayakawa, T. Tsuchikawa, Y. Yokoyama, M. Wakasa, H. Hayashi, Chem. Lett. (1998) 91.
- [21] S.J. Holder, R.G. Jones, R.E. Benfield, M.J. Went, Polymer 37 (1996) 3477.
- [22] T. Imori, T.D. Tilley, J. Chem. Soc., Chem. Commun. (1993) 1607.
- [23] S. Adams, M. Dräger, J. Organomet. Chem. 288 (1985) 295.
- [24] S. Adams, M. Dräger, B. Mathiasch, J. Organomet. Chem. 326 (1987) 173.
- [25] L.R. Sita, Acc. Chem. Res. 27 (1994) 191.
- [26] L.R. Sita, Organometallics 11 (1992) 1442.
- [27] L.R. Sita, Adv. Organomet. Chem. 38 (1995) 189.
- [28] L.R. Sita, K.W. Terry, K. Shibata, J. Am. Chem. Soc. 117 (1995) 8049.
- [29] M. Dräger, L. Ross, Z. Anorg. Allg. Chem. 460 (1980) 207.
- [30] M. Dräger, L. Ross, D. Simon, Z. Anorg. Allg. Chem. 466 (1980) 145.

- [31] L. Ross, M. Dräger, J. Organomet. Chem. 194 (1980) 23.
- [32] M. Dräger, L. Ross, Z. Anorg. Allg. Chem. 469 (1980) 115.
- [33] L. Ross, M. Dräger, Z. Anorg. Allg. Chem. 472 (1981) 109.
- [34] M. Dräger, D. Simon, Z. Anorg. Allg. Chem. 472 (1981) 120.
- [35] M. Dräger, L. Ross, Z. Anorg. Allg. Chem. 476 (1981) 95.
- [36] L. Ross, M. Dräger, J. Organomet. Chem. 199 (1980) 195.
- [37] L. Ross, M. Dräger, Z. Naturforsch., B 38 (1983) 665.
- [38] L. Ross, M. Dräger, Z. Anorg. Allg. Chem. 515 (1984) 141.
- [39] D. Simon, K. Häberle, M. Dräger, J. Organomet. Chem. 267 (1984) 133.
- [40] L. Ross, M. Dräger, Z. Anorg. Allg. Chem. 519 (1984) 225.
- [41] M. Dräger, K. Häberle, J. Organomet. Chem. 280 (1985) 183.
- [42] S. Roller, D. Simon, M. Dräger, J. Organomet. Chem. 301 (1986) 27.
- [43] M. Dräger, D. Simon, J. Organomet. Chem. 306 (1986) 183.
- [44] K. Häblerle, M. Dräger, J. Organomet. Chem. 312 (1986) 155.
- [45] S. Roller, M. Dräger, J. Organomet. Chem. 316 (1986) 57.
- [46] K. Häberle, M. Dräger, Z. Naturforsch., B 42 (1987) 323.
- [47] K. Häberle, M. Dräger, Z. Anorg. Allg. Chem. 551 (1987) 116.
- [48] F. Glockling, K.A. Hooton, J. Chem. Soc. (1962) 3509.
- [49] F. Glockling, K.A. Hooton, J.C. Kotz, A.W. Laubengayer, Inorg. Synth. 8 (1966) 31.
- [50] F. Glockling, The Chemistry of Germanium, Academic Press, London, 1969.
- [51] C.S. Weinert, in: R.H. Crabtree, D.M.P. Mingos (Eds.), Comprehensive Organometallic Chemistry III, vol. 3, Elsevier, Oxford, 2007, p. 699.
- [52] M. Lesbre, P. Mazerolles, J. Satgé, The Organic Compounds of Germanium, Wiley Interscience, London, 1971.
- [53] M. Weidenbruch, F.-T. Grimm, M. Herrndorf, A. Schäfer, K. Peters, H.G. von Schnering, J. Organomet. Chem. 341 (1988) 335.
- [54] M. Dräger, L. Ross, D. Simon, Rev. Silicon, Germanium, Tin, Lead Compd. 7 (1983) 299.
- [55] K. Mochida, H. Chiba, J. Organomet. Chem. 473 (1994) 45.
- [56] K. Mochida, R. Hata, M. Shimoda, F. Matsumoto, H. Kurosu, A. Kojima, M. Yoshikawa, S. Masuda, Y. Harada, Polyhedron 15 (1996) 3027.

- [57] Y. Yokoyama, M. Hayakawa, T. Azemi, K. Mochida, J. Chem. Soc., Chem. Commun. (1995) 2275.
- [58] T. Azemi, Y. Yokoyama, K. Mochida, J. Organomet. Chem. 690 (2005) 1588.
- [59] J.E. Bender IV, M.M. Banaszak Holl, A. Mitchell, N.J. Wells, J.W. Kampf, Organometallics 17 (1998) 5166.
- [60] E. Subashi, A.L. Rheingold, C.S. Weinert, Organometallics 25 (2006) 3211.
- [61] M. Rivière-Baudet, P. Rivière, J. Organomet. Chem. 116 (1976) C49.
- [62] M. Rivière-Baudet, Main Group Met. Chem. 18 (1995) 353.
- [63] B. Ohlsson, C. Ullenius, S. Jagner, C. Grivet, E. Wenger, E.P. Kündig, J. Organomet. Chem. 365 (1989) 243.
- [64] M. Wojnowska, M. Noltemeyer, H.J. Fuellgrabe, A. Meller, J. Organomet. Chem. 228 (1982) 229.
- [65] K.A. Miller, T.W. Watson, J.E. Bender IV, M.M. Banaszak Holl, J.W. Kampf, J. Am. Chem. Soc. 123 (2001) 982.
- [66] L. Párkányi, A. Kálmán, S. Sharma, D.M. Nolen, K.H. Pannell, Inorg. Chem. 33 (1994) 180.
- [67] J. March, Advanced Organic Chemistry, John Wiley & Sons, New York, 1992, p. 963.
- [68] M. Rivière-Baudet, A. Morère, J.F. Britten, M. Onyszchuk, J. Organomet. Chem. 423 (1992) C5.
- [69] K. Wraage, L. Lameyer, D. Stalke, H.W. Roesky, Angew. Chem., Int. Ed. Engl. 38 (1999) 522.
- [70] K. Wraage, H.-G. Schmidt, M. Noltemeyer, H.W. Roesky, Eur. J. Inorg. Chem. (1999) 863.
- [71] J.L. Walding, P.E. Fanwick, C.S. Weinert, Inorg. Chim. Acta 358 (2005) 1186.
- [72] R.W. Chorley, P.B. Hitchcock, M.F. Lappert, W.P. Leung, P.P. Power, M.M. Olmstead, Inorg. Chim. Acta 198–200 (1992) 203.
- [73] M.F. Lappert, M.J. Slade, J.L. Atwood, M.J. Zaworotko, J. Chem. Soc., Chem. Commun. (1980) 621.
- [74] J. Emsley, The Elements, Oxford University Press, New York, 1991.
- [75] D.F. Shriver, M.A. Drezdzon, The Manipulation of Air Sensitive Compounds, John Wiley and Sons, New York, 1986.